The Virtual Reality Operating Room

The future of simulation in medical instruction

By Maxwell Delamere-Sanders

 

 

Perhaps the first thing that comes to mind when you think of simulations is the flight simulator, maybe something like the Link Trainer (pictured in Figure 1). Flight training is well suited to simulation, as it is potentially dangerous and involves expensive hardware. The medical profession shares – and surpasses – these risks, making it fertile ground for simulation-based education. From antiquity, medical simulation used clay, stone or wood mannequins to allow students to practice medical procedures safely, as described by Meller.

The Link Trainer, the first flight simulator, built in 1929.
Figure 1: The Link Trainer, the first flight simulator, built in 1929.

Modern medical simulation still uses mannequins (though stone and clay have been replaced by silicone and circuitry) as well as virtual simulations. Most medical education institutions employ some form of both of these modalities of simulation as described by May. Multiple studies have demonstrated the effectiveness of simulation for medical education, such as those conducted by Underwood and McKinney. Fidelity refers to how closely a simulation resembles the real-world experience it aims to simulate. New materials and technology for mannequins have dramatically increased their fidelity in the last thirty years. Virtual reality is experiencing a similar boom in recent years as computer horsepower and rendering techniques come closer to matching the real operating room (OR).

To VR or not to VR

Developing training for medical professionals today means choosing an approach out of a large and varied toolbox. Virtual Reality (VR) is one of these tools and its appeal is only growing. VR is a cost-effective and versatile alternative to expensive mannequins or specialized trainers. The main barrier to VR replacing other simulation methods has long been fidelity, as described by Satava. However, fidelity seems to have a limited effect on learning outcomes as found by Yang. Isaranuwatchai evaluated the cost effectiveness of a series of training methodologies: VR, high fidelity mannequin and progressive (VR and mannequin). They found that, depending on the funds available for investment in training programs, VR provides good return on investment in terms of learning outcomes.

Just as medical training mannequins experienced a significant leap in fidelity in the 1990s with the improvement of materials available and computer hardware and software for information gathering and feedback as described by Meller and Cooper, VR is in the nascent stages of a similar revolution. Stronger computer hardware and rendering techniques, as well as commercially available, affordable VR hardware herald a new age for VR as described by Rothman. The technology exists for high-fidelity medical training simulations, but the investment does not. Even the most recent simulations lag behind video games for entertainment in fidelity by at least a decade.

A VR Simulation for Advanced Cardiac Life Support (ACLS) Training

A screenshot of Vankipuram and colleagues’ cardiac life support simulation (left) and an input device designed to simulate compressions (right).
Figure 2: A screenshot of Vankipuram and colleagues’ cardiac life support simulation (left) and an input device designed to simulate compressions (right).

Vankipuram and colleagues have taken a step toward closing this gap. They have developed a VR simulation for cardiac life support training using a modern game engine (UnrealEngine), VR headsets and customized input devices (see figure 2). Networking allows students to work together, each filling a role on the trauma team. A customized UI provides real-time feedback on performance, while detailed data is gathered for evaluation and debriefing by an instructor. One of the biggest advantages of VR simulations over their practical counterparts is their ability to record large amounts of detailed information. Traditional mannequin simulations rely on the instructor to observe and provide feedback on each team member’s individual performance, while VR simulations can record every detail of every action of each team member.

Remote Facilitation

Another benefit of VR simulations for medical training is the potential for remote facilitation. Availability of specialized facilitators can be a major impediment to effective medical instruction. Ohta and colleagues compared a remotely facilitated, VR simulation-based pediatric resuscitation training module for medical students with the same program facilitated locally. They found no significant difference in learning outcomes for the remote facilitator versus the local one. Remote facilitation has the potential to greatly improve access to high-quality instructors in specialized fields across institutions at lower cost and with greater flexibility than requiring an in-person facilitator.

Next Steps

This work is a step in the right direction, but greater investment in the development of high-fidelity VR simulations for medical training is needed. The role of fidelity in the effectiveness of medical simulations is disputed. Yang and colleagues found no correlation between fidelity and effectiveness, while Isaranuwatchai and colleagues found that high-fidelity mannequins provide some improvement to learning outcomes over low-fidelity VR simulations. As VR simulations improve, more research is required to compare their effectiveness with more traditional methods of instruction, especially high-fidelity mannequins.

Remote facilitation has long been touted as the future of education. With the advent of reliable, fast internet connections and high-fidelity VR and the sense of presence it provides, remote facilitation is becoming more feasible. The future of medical education is virtual.

References

Christensen, M., Tan, S., Rieger, K., Dieckmann, P., Oestergaard, D., & Watterson, L. (2013). A       Comparison of the Relative Effectiveness of Remotely and Locally Facilitated Simulation-Based          Training of Medical Emergencies by Postgraduate Healthcare Teams. Simulation in Healthcare:            The Journal of the Society for Simulation in Healthcare, 8(6), 526.

Cooper, J. B., & Taqueti, V. R. (2008). A brief history of the development of mannequin simulators for       clinical education and training. Postgraduate Medical Journal, 84(997), 563-570.

Underwood, L., Ginkel, C. V., Lee, D., Wong, M., Dizaiy, S., Fry-Bowers, E., Nguyen, H. (2008). 153:              Effectiveness of Medical Simulation on Knowledge in Septic Shock Management During Pre-    Clinical Medical Training. Annals of Emergency Medicine, 51(4), 517.

Dotson, M. P., Gustafson, M. L., Tager, A., & Peterson, L. M. (2018). Air Medical Simulation Training: A      Retrospective Review of Cost and Effectiveness. Air Medical Journal, 37(2), 131-137.

Fletcher, J. D., & Wind, A. P. (2013). Cost Considerations in Using Simulations for Medical               Training. Military Medicine, 178(10S), 37-46.

Isaranuwatchai, W., Brydges, R., Carnahan, H., Backstein, D., & Dubrowski, A. (2013). Comparing the         cost-effectiveness of simulation modalities: A case study of peripheral intravenous     catheterization training. Advances in Health Sciences Education, 19(2), 219-232.

Lin, W., & Song, Y. (2017). Effectiveness of different numbers of simulation training models on medical    students’ cervical examination performance. International Journal of Gynecology &              Obstetrics, 141(2), 255-260.

Mckinney, J., Cook, D. A., Wood, D., & Hatala, R. (2012). Simulation-Based Training for Cardiac     Auscultation Skills: Systematic Review and Meta-Analysis. Journal of General Internal              Medicine,28(2), 283-291.

Meller, G. (1997). A typology of simulators for medical education. J Digit Imaging, 10(3), 194-196.

Ohta, K., Kurosawa, H., Shiima, Y., Ikeyama, T., Scott, J., Hayes, S., Nishisaki, A. (2017). The Effectiveness of Remote Facilitation in Simulation-Based Pediatric Resuscitation Training for Medical          Students. Pediatric Emergency Care, 33(8), 564-569.

Rothman, J. (2018, April 2). Are We Already Living in Virtual Reality? The New Yorker.

Satava, R. (2013). Keynote speaker: Virtual reality: Current uses in medical simulation and future                opportunities & medical technologies that VR can exploit in education and training. 2013 IEEE Virtual Reality (VR).

Vankipuram, A., Khanal, P., Ashby, A., Vankipuram, M., Gupta, A., Drummgurnee, D., Smith, M. (2014).    Design and Development of a Virtual Reality Simulator for Advanced Cardiac Life Support      Training. IEEE Journal of Biomedical and Health Informatics, 18(4), 1478-1484.

Yang, C., Wang, H., Chou, E. H., & Ma, M. H. (2012). Fidelity does not necessarily result in effectiveness –                A randomized controlled study in a simulation-based resuscitation training for medical        students. Resuscitation, 83.


Maxwell Delamere-Sanders is a student in the Seneca Technical Communication Certificate Program at Seneca College. He completed a degree in English and Psychology at the University of Toronto in 2016, and is excited to bring his passion for language and the human mind to bear on the field of technical communication.

Evaluating Simulations in Medical Education

By: Serena Zaccagnini

Simulations in medical training are a realistic cross-disciplinary method of training and feedback. In simulation-based learning learners can repeatedly practice and review tasks in lifelike circumstances using physical or virtual reality models to identify and understand the factors that affect systems and the problems that can arise. Simulation-based medical education (SMBE) allows students the chance to refine their skills in a safe and controlled environment where they can increase their skills and reduce their margins of error. SMBE creates a safe and controlled environment that exposes trainees to dangerous conditions.

The State of Medical Education

Research by Jones, Passos-Neto and Braghiroli indicates that, despite advances in technology, teaching strategies and learning theories, it is not uncommon for medical students to be taught with decades-old syllabi. The current model of medical training has been in use for at least a hundred years, but a developing movement for patient safety has forced institutes to revise the medical education system.

Several external factors are driving the movement for medical education reform:

  • Increased awareness of information overload and stress on medical students.
  • Recognition of the need for students to be effective junior doctors after undergraduate studies, not during residency; students are often ill-prepared for their roles.
  • The need for continuing education for higher specialist training, coupled with the drive to revalidate.
  • New interest in outcomes-based education, focusing on the student’s ability to perform what they have learned, rather than the typical goal-based education, which focuses on student satisfaction.

Some institutions have already adopted simulations for use in examinations. For example, Scalese, Obeso and Issenberg indicate that the Royal College of Physicians and Surgeons in Canada uses simulations with computers and mannequins alongside patient participants in their Internal Medicine certification exams.

Simulations, Past and Present

Any person attempting to determine the origins of simulation-based education would find themselves mired in information dating back millennia. While the first dedicated use of simulations in medical training took place in the USA in the 1960s, use of simulations in medical training can be found across cultures and ancient civilizations. In the past, these simulations used active participants or mannequins as the test subject. Over the last several decades, the educational tools shifted from the real-world to the virtual.

A Shift toward the Virtual

Medical education is one of many disciplines experiencing a significant increase in the use of simulation technology for teaching and assessment. From the military and aviation industries training pilots on flight simulators to construction workers training on virtual cranes, simulation-based education has seen a boom in trust and satisfaction.

The shift to virtual education for medicine follows the trends of society. Many medical students and practitioners have adapted their methods to better fit the 21st century:

  • Many medical students view lectures online or listen via podcasts.
  • Residents consult information stored in Personal Digital Assistants (PDAs) to make patient management more efficient.
  • Practitioners can receive continuing education credits by attending teleconferences.

Much of the movement toward simulations occurred in the 1980s and 1990s, when sophisticated computers and software capable of reproducing and mimicking physiologic responses and feedback were produced. The first wave of simulated patients combined a Macintosh computer with a mannequin and waveform generator to mimic a patient during anaesthesia. Specialties such as anesthesiology, critical care and emergency medicine have long been at the forefront of the push toward SMBE.

Technological innovations have paved the way for a wide range of simulators that can facilitate and supplement learning in numerous medical disciplines.

The Limits of SMBE

Primary concerns regarding simulation use in medicine involve cost, efficiency and simulation quality.

  • Cost: The best medical simulations are available at considerable costs. Machines require maintenance and updating, which continually adds to the initial purchase price.
  • Efficiency: Incorporating time into current medical curriculums is problematic and would require the medical curriculum to be updated. Dedicated and exclusive resources are seldom available. For simulations, an instructor-to-learner ratio of 1:3 or 1:4 is ideal, where the current ratio is between 1:10 and 1:15.
  • Simulation Quality: Human systems are complicated and varied, thus models and instruments can never completely mimic each iteration. Poorly designed simulations can inhibit learning, such as causing students to neglect checking for physical signs because they are absent in the simulation. Participants will naturally approach simulations differently than they would real life. Students will either be hypervigilant or negligent.

Long-term studies must be conducted to analyse the effects of SMBE on patient care and general effectiveness as a teaching tool. It is only after the impact of SMBE has been evaluated that simulations can begin to replace all outdated teaching materials.

Where To, Next?

The current model of medical education has changed little over the last hundred years, but an increase in demand for experienced doctors has pushed educational institutions to reconsider the system. Simulation on its own cannot guarantee learning, but it is a game-changer.

Future studies should be conducted regarding the effects of SMBE on improving patient outcome. Without strong evidence, a field as costly and vital as medical education cannot be altered with any severity. At best, simulations will be a periphery in medical education and training. The potential growth for SMBE alongside technological advances is unmeasurable and may be the key to training medical professionals in the future. However, institutions and practitioners must analyse the current education system and the validity of SMBE research to determine if the jump can be made now or later.

The shift toward heavy technology use is unavoidable; medical professionals, as other professions, have started to rely on computer- and cloud-based materials to improve their patient care. What remains to be seen is if they will fully accept this paradigm shift and trust simulations to train the next generation of doctors.

Resources

Bradley, Paul. “The History of Simulation in Medical Education and Possible Future Directions.” Medical Education 40, no. 3 (March 2006): 254-62. doi:10.1111/j.1365-2929.2006.02394.x.

James, John T. “A New, Evidence-based Estimate of Patient Harms Associated with Hospital Care.” Journal of Patient Safety 9, no. 3 (September 2013): 122-28. doi:10.1097/PTS.0b013e3182948a69.

Jones, Felipe, Carlos Eduardo Passos-Neto, and Oddone Freitas Melro Braghiroli. “Simulation in Medical Education: Brief History and Methodology.” Principles and Practice of Clinical Research 1, no. 2 (July/August 2015): 56-63.

Krishnan, Divya G., Anukesh Vasu Keloth, and Shaikh Ubedulla. “Pros and Cons of Simulation in Medical Education: A Review.” International Journal of Medical and Health Research 3, no. 6 (June 2017): 84-87.

Scalese, Ross J., Vivian T. Obeso, and S. Barry Issenberg. “Simulation Technology for Skills Training and Competency Assessment in Medical Education.” Journal of General Internal Medicine 23, no. Suppl 1 (January 2008): 46-49. doi: 10.1007/s11606-007-0283-4.


Serena Zaccagnini is a student at Seneca College in Toronto, Ontario studying Technical Communication. She is looking forward to a career in the Technical Communication field. I have a Specialized Honours Bachelor of Arts in English and Professional Writing with emphasis on Digital and Institutional Communication from York University. In my spare time, I enjoy reading and baking.

Engaging Your Audience with Effective Instructional Methods

By Minyu Anna Philip

A classroom or an office is a blend of personalities. Just as educators develop preferences for methods to teach, learners develop preferences for a specific way of learning. As we set out to instruct, it is our responsibility to build up methodologies to effectively communicate to our unique audience. Every instructional method comes with its own advantages and disadvantages. The type of learner and the level of knowledge they possess are two essential considerations when designing any instructional plan. The physical settings of the teaching space and the materials available also play an important role in the selection of an instructional method. A novice would have to be taught from scratch whereas what a subject matter expert probably needs to learn is probably a new perspective of approaching a problem. Any instructional method requires a level of preparation by the educator and sometimes, from the learners. However, one scenario or subject could be taught in several different ways and here you shall see different types of effective instructional methods.

Role Playing

In role playing, learners take the role of another person to understand what it is like to be in their shoes.

The preparations required for this activity are that the educator defines the problem situation and provides clear instructions, topics and roles.

This activity helps to introduce the scenario dramatically. It enables the learners to assume the roles of others and thus appreciate another point of view. It is also an excellent method of practicing their skills in a practical environment and helps them to explore real-time solutions for problems.

The activity could be time-consuming to set up and execute and it could make a few of the learners self-conscious.

Games

Games introduce active participation to learners in a team-building activity.

The groundwork of game-building activities includes choosing relevant games that can be reasonably expected to achieve the learning objectives. The educator must introduce the game, provide clear, thorough directions and make the objectives known beforehand. It is important that the atmosphere is friendly and pinpointing of losers is avoided so that the confidence of the participants is not shaken. The educator must be able to handle all kinds of situations and not take sides or be partial.

The advantages of this activity are that learners are usually challenged by and interested in games. It brings about a fun and stimulating experience and improves team-building activities.

The disadvantages of having games as an activity are that it could be demotivating for non-competitive learners. It could also instill a feeling of shortage of skill as compared to the more competitive and talented learners. If the focus is on who wins the game rather than the activity itself, it might discourage creativity.

Group discussion

The class is divided into groups and a topic is given to each group to be discussed.

This activity requires the educator to decide on a purpose for each group. It is also necessary to invigilate the group so that the learners do not deviate from the topic in discussion.

The advantage of this activity is that it allows an active participation from everyone in the group. The learners might feel more comfortable sharing in a smaller group as opposed to a larger group.

The disadvantage in this activity is that a few students might dominate and it might not be as effective when there are a lot of students in one group.

Debates

Learners form two groups take different sides of a topic and debate on the pros and cons on a specific topic.

The preparation required for this activity is to come up with a topic that will not create a scene that the educator might not be able to moderate.

The advantages of this activity are similar to having a group discussion. This activity also includes a smaller group and enables active participation. The learners feel more comfortable expressing their thoughts regarding a subject knowing that there are others to support it. This, in turn, encourages team spirit.

The disadvantage of having a debate is that there could be an argument that gets out of hand.

Surveys

Learners prepare questionnaires, online or on paper, and collect information. The educator could also prepare a questionnaire and make the learners fill it out, then form a discussion based on the output.

This activity requires careful thought about the various topics on which a survey could be conducted. It also demands research by the educators to prepare handouts for the students.

The advantages include the possible use of social media to get survey input, encouragement of reflective observation, analysis of direct feedback from the audience and active experimentation.

A disadvantage is that this activity is time-consuming. The learners might be required to go to a variety of audiences to obtain an accurate analysis which can be physically taxing as well.

Service learning

Learners volunteer to provide meaningful help to the community thereby learning from practical experiences.

The preparation for this activity is for the learners to find an area of genuine interest. They might have to travel, ask difficult questions and help those in need. This might require prior counseling before setting out on their course of activity.

The advantages of this activity are getting a first-hand experience of being in the field of work and a sense of giving back to society. It also encourages reflective observation and active interaction with the audience.

The disadvantage is that this could be time-consuming and could cause mental and physical challenges to the learner.

Conclusion

Learners come from different backgrounds, with varying capabilities and areas of interests. It might be difficult to find a method that suits all the learners in an equal way. Having a healthy assortment of instructions and teaching methodologies ensure that all the learners are benefitted.

References

Educational opportunities

By Sylvia Miller, Student Outreach manager

Is a certificate or degree in instructional design on your horizon? If so, check out our Education page that contains 112 colleges and universities in the U.S. and Canada. Although most are graduate degree programs, there are some certificates included in the list. The list also includes degree and certificate programs that are totally online! We recently reviewed all the links and weeded out a few discontinued listings, and we added at least 20 new ones! Check them out, and pass along the word to colleagues that the links to 112 colleges and universities are on ONE site.


Sylvia Miller, Student Outreach Coordinator
Sylvia Miller, Student Outreach Coordinator

IDL SIG Membership Renewal

By Lori Meyer, Membership manager

The STC membership renewal season is here and we’re looking forward to having you as a member of our SIG in 2020! You can renew at any time between now and December 31, 2019. Your renewal will enable you to continue enjoying the many benefits of membership in our community — including free attendance at all SIG webinars, opportunities to grow your network, build your skills and receive recognition through SIG and STC awards.

You can renew by going to http://stc.org/membership and clicking the Renew your STC membership today link. Log in to your STC member account and the system will guide you through the renewal application. When you complete the renewal process, you will receive a confirmation email from STC.

Some tips to help you with the renewal process

Be sure to select the IDL SIG as a community, even if you are already a member of our SIG. The membership renewal system does not automatically enter this information. If you are a Gold member, the system will remove the $10.00 per-SIG membership charge when you submit the renewal form.

If you are 65 years old or older, you can renew as a Retired member at reduced membership rates. Retired memberships cannot be processed online. To change your membership category to Retired, you will need to download and complete the STC paper membership application or call the STC office at (703) 522-4114.

If you have any questions or concerns about your membership, please feel free to contact me at membership@stcidlsig.org. I will be happy to answer any questions you have, or guide you to resources you need.

Thank you for being a member of the IDL SIG!


Lori Meyer
Lori Meyer

Lori Meyer, an STC Fellow, has more than 20 years of experience as a technical writer, editor, and help developer. She began her technical communication career in Rochester, NY, and relocated to the San Francisco Bay area in 1998. Lori has been active in STC since the early 1990s, starting with the Rochester Chapter, where she created the chapter’s first Web site.

Since then, she has held in many volunteer positions, including employment manager, secretary, conference co-chair, membership manager, director-at-large, and SIG co-manager. She has delivered leadership presentations at the STC Summit international conference and via webinar.

On the community level, over the years Lori has served as a director at large for the Carolina Chapter, secretary and president of the Washington DC-Baltimore Chapter, membership manager of the Rochester, East Bay, and San Diego Chapters, and president of the East Bay Chapter. Lori stays involved with these communities, and also volunteers for the Technical Editing and Consulting and Independent Contracting SIGs.